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The µ-η2:η2-peroxodicopper(II) (Cu2(µ-η2:η2-O2)) and bis(µ-
oxo)dicopper(III) (Cu2(µ-O)2) species have been investigated in the
model studies of type III copper proteins, and these structures are
also considered as important motifs for O2-activating metalloproteins
in biological systems.1,2 The interconversion between these species
in solution was found to depend on organic solvents and
counteranions.2,3 Recent studies of the interconversion equilibrium
in copper-aliphatic diamine complex systems strongly suggested
that coordination of counteranions promotes the conversion of
Cu2(µ-O)2 to Cu2(µ-η2:η2-O2) species.2b,3b,c However, direct evi-
dence for formation of the anion-coordinating structure is yet to
be presented. Here, we report the formation and crystal structure
of a new Cu2(µ-η2:η2-O2) complex with a bridging carboxylate
ligand.4a Structural studies and density functional theory (DFT)
calculations suggested factors regulating stepwise-activation of
dioxygen by bridging-carboxylate ligation to the dicopper core.

We reported earlier that an alkaloid, (-)-sparteine (Sp), forms a
distorted bis(µ-hydroxo)dicopper(II) (Cu2(µ-OH)2) complex because
of its preorganized structure and that a copper(I) complex of Sp is
oxygenated to form a Cu2(µ-O)2 species.4b We now synthesized
the copper complexes of R-isosparteine (RSp), which is one of the
stereoisomers of Sp and, with its structural constraint, enforces
tetrahedral distortion around the transition metal(II) ions.4,5 The
Cu(I) complex of RSp, [CuI(RSp)(CH3CN)]SbF6 (1 ·SbF6), reacted
with dioxygen to generate a Cu2(µ-O)2 species, [Cu2(RSp)2(µ-O)2]2+

(2),4a in organic solvents (CH2Cl2, THF, and acetone) at -80 °C.
The brown-colored solution in CH2Cl2 exhibited two intense
absorption bands centered at λmax (ε/M-1 cm-1) ) 321 nm (10600)
and 433 nm (22000) and resonance Raman (rR) bands at V ) 631
and 602 cm-1 for the adducts with 16O2 and 18O2, respectively
(∆[16O2-18O2] ) 29 cm-1) (Supporting Information, Figures S1,
S2). These spectral features are characteristic of the reported Cu2(µ-
O)2 species (CurO LMCT bands, λmax ≈ 300 and 400 nm; rR
frequencies and their isotope shifts of the Cu2(µ-O)2 core stretching
mode, V ≈ 600 cm-1 and ∆V[16O2-18O2] ≈ 25 cm-1).2c When a

colorless acetone solution containing 1 ·SbF6 and benzoate (Bz-)
in the molar ratio of 1/0.5 was bubbled with O2 at -80 °C, the
solution turned dark blue, giving two intense absorption bands
centered at λmax (ε/M-1 cm-1) ) 372 nm (19500) and 745 nm (1300)
(Figure S3). The rR spectrum of the dark-blue oxygenated acetone
solution by using 16O2 at -80 °C exhibited an intense peak at V )
756 cm-1, which shifted to 715 cm-1 upon using 18O2

(∆V[16O2-18O2] ) 41 cm-1) (Figure S4). These spectral features
were analogous to those of the previously reported CuII

2(µ-η2:η2-
O2) species (CurO LMCT bands, λmax (ε/M-1 cm-1) ) 340-380
nm (18000-25000) and 510-550 nm (ca. 1000); (rR frequencies
and its isotope shifts of O-O, V ) 730-760 cm-1 and
∆V[16O2-18O2] ≈ 40 cm-1),2c although the CT band observed at
745 nm is in the lower energy region than that reported for usual
out-of-plane πv*fdx2-y2 peroxo to Cu(II) CT (510-550 nm). To
structurally define the dark-blue dioxygen adduct, we isolated the
dark-blue crystals of the adduct suitable for X-ray measurements
from the acetone solution at -85 °C. The crystallographic analysis
revealed that the dioxygen adduct, [CuII

2(RSp)2(µ-η2:η2-O2)(Bz-)]-
SbF6 (3 ·SbF6), has a dicopper core bridged by a side-on peroxide
ion and a Bz- ligand, as shown in Figure 1. The atomic distance
between two copper centers in 3 (Cu1 · · ·Cu2 ) 3.265(2) Å) lies
in between the values reported for CuII

2(µ-η2:η2-O2) cores (3.48-3.56
Å)6 and CuIII

2(µ-O)2 cores (2.74-2.91 Å)2a,c structurally defined
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Figure 1. ORTEP view of [CuII
2(RSp)2(µ-η2:η2-O2)(Bz-)]+ (3) with thermal

ellipsoids drawn at the 30% probability. The hydrogen atoms and a SbF6
-

molecule are omitted for clarity. Selected bond distances (Å) and angles
(deg): O1-O2, 1.498(15); Cu1-N1, 1.981(12); Cu1-N2, 1.977(14);
Cu2-N3, 1.983(13); Cu2-N4, 1.998(13); Cu1-O1, 1.976(11); Cu1-O2,
1.873(11); Cu2-O1, 1.912(10); Cu2-O2, 1.977(11); Cu1-O3, 2.124(11);
Cu2-O4, 2.111(12); N1-Cu1-N2, 90.8(5); N3-Cu2-N4, 90.6(5);
O1-Cu1-O2, 45.7(4); O1-Cu2-O2, 45.3(4).
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by X-ray crystallography, and it is consistent with the values for
the butterfly-shaped CuII

2(µ-η2:η2-O2) core structures estimated by
EXAFS studies (3.22-3.37 Å).7 Interestingly, the Cu2O2 core of 3
is extremely bent with a hinge angle δ ) 132° along the O1-O2
axis, which is much smaller than the angles of structurally
determined CuII

2(µ-η2:η2-O2) complexes (δ ) ca. 163°)6 and the
calculated one (δ ) ca. 150°).3c,8 The asymmetric coordination
bond distances of the side-on peroxide oxygen atoms in the
equatorial positions, Cu-Operoxo ) 1.873(11)-1.977(11) Å, and the
O-O bond distance of side-on peroxide, 1.498(15) Å, are in
agreement with the reported values of CuII

2(µ-η2:η2-O2) complexes
(Cu-Operoxo ) 1.89-1.95 Å and O-O ) 1.41-1.49 Å).6 The axial
coordination of the bridging carboxylate group of Bz- should be
important for forming such an extremely bent Cu2O2 core in 3.
Surprisingly, the bond distances between the copper ions and the
carboxylate oxygen atoms of Bz- in the axial positions, Cu-OBz )
2.124(11) and 2.111(12) Å, are longer than the equatorial
Cu-Operoxo bonds but are shorter than the typical values for the
axial nitrogen coordination to Cu(II) in N2O2 planes in dicopper(II)
µ-η2:η2-peroxo complexes with tridentate ligands (Cu-Nax )
2.14-2.27 Å).6 The deviations of the copper atoms from least-
squares planes of the equatorial N2O2 coordination in 3, are 0.36
and 0.35 Å for Cu1 and Cu2, respectively, which are larger than
the typical values reported for CuII

2(µ-η2:η2-O2) structures (0.21-0.29
Å).6 This is probably due to the strong axial coordination of the
bridging Bz- ligand. To check the coordination properties around
the copper ions, we performed theoretical calculations of the
electronic structure of 3 by spin unrestricted broken-symmetry (Ms
) 0) DFT using atomic coordinates fixed to the crystal structure
(Table S1). The results supported that the side-on peroxo O atoms
of 3 occupy the equatorial positions, the atomic spin densities being
ca. -0.57 and 0.57 for Cu1 and Cu2 atoms, and ca. 0.04 and -0.03
for O1 and O2 atoms, respectively. The bond order parameters of
the Cu-O bonds in 3 were calculated to be ca. 0.11∼0.17 for
Cu-Operoxo and ca. 0.07 for Cu-OBz, indicating that the equatorial
Cu-Operoxo bonds are more covalent than the axial Cu-OBz bonds
and that the latter are more ionic/electrostatic. Indeed, the atomic
charge values were ca. +1.42 to +1.43 for Cu1 and Cu2 atoms,
and those for O3 and O4 atoms of Bz- were more negative (ca.
-0.85 to -0.88) than those of peroxo O1 and O2 atoms (ca. -0.68).
On the basis of these results, a reasonable interpretation of the strong
axial coordination is that the ionic and polarized axial Cu-O bonds
of Bz- are strengthened by electrostatic interaction with their local
atomic charges. Relevant to this, the rR study indicated that the
core stretching mode frequencies of the Cu2(µ-O)2 species, 2, is
ca. 30 cm-1 higher (V ) 631 cm-1) than those of the other Cu2(µ-
O)2 species (580-616 cm-1),2,3 suggesting that RSp is a weaker
σ-electron-donating ligand than the others.9 In this case, RSp does
not destabilize dx2-y2 orbital efficiently, and the energy gaps of the
two CurO LMCT transitions of 2 (λmax ) 321, 433 nm) are smaller
than those of the typical coplanar Cu2(µ-O)2 complexes with N,N′-
peralkylated aliphatic diamine ligands (297-319 and 397-407
nm).2,3 On the basis of the above considerations, we may conclude
that because of the less effective σ-donating property of RSp the
remaining positive charge on the Cu centers is favorable for
coordination of an exogeneous anionic ligand such as Bz- in the
axial position. In fact, addition of an equimolar amount of Bz- to
the yellow-brown solution of 2 in acetone at -80 °C readily gave
the dark-blue solution of 3 (Figure S5).

In summary, we succeeded in synthesizing [CuII
2(RSp)2(µ-η2:

η2-O2)(Bz-)]SbF6 (3 ·SbF6) and determining the novel coordination
structure of a carboxylate-bridged butterfly type µ-η2:η2-peroxide

dicopper(II) core. The “bridged butterfly core” was supported by
an exogenous ligand, Bz-, in the axial position, losing its strong
planarity regardless of the Jahn-Tellar effect10 on the dx2-y2 ground-
state of Cu(II) d9-configuration. We consider that weaker σ-donation
of RSp to the copper centers promotes the more electrostatic/ionic
axial coordination of Bz- in 3. Axial coordination of negative Bz-

to 2 elongates the equatorial Cu-O bonds to destabilize the bis(µ-
oxo) state, converting it to the corresponding µ-η2:η2-peroxo state
of 3. The preorganized, constrained, and sterically hindered ligand,
RSp, forms a distorted coordination environment with less effective
dσ-pσ orbital overlaps, decreasing the stabilization effect on 3d
orbitals and enhancing electrostatic/ionic coordination properties
in the metal-dioxygen intermediate. Thus, in distorted and less
covalent coordination geometries, a carboxylate group should have
an influence on the reactivity of a transition metal ion through the
more electrostatic/ionic binding, which may be related to the
controlled stepwise reduction of dioxygen at carboxylate-bridged
dimetal active centers as seen in nonheme diiron proteins.11
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